
Generate Synthetic Poisson Clones for PET Data
Source:R/generatePoissonClones.R
generatePoissonClones.Rd
Generates synthetic clones of a PET data matrix by adding Poisson-distributed noise to each non-zero voxel. This approach helps address the limitations of functional data analysis (FDA) in single-subject versus group (1 vs. Group) setups, where a single subject lacks sufficient variability to reliably estimate Simultaneous Confidence Corridors (SCCs).
Value
A numeric matrix with numClones
rows, each representing a noisy version
of originalMatrix
with Poisson noise added.
Details
Values equal to
0
remain unchanged to preserve background regions.NA
values are replaced with0
before adding noise.Poisson noise is applied only to positive values, scaled by
lambdaFactor
.Enables valid SCC estimation in single-subject settings by artificially increasing sample size.
Examples
# Load example input matrix for Poisson cloning
data("generatePoissonClonesExample", package = "neuroSCC")
# Select 10 random voxel positions for display
set.seed(123)
sampledCols <- sample(ncol(generatePoissonClonesExample), 10)
# Generate 1 synthetic clone
clones <- generatePoissonClones(generatePoissonClonesExample, numClones = 1, lambdaFactor = 0.25)
# Show voxel intensity values after cloning
clones[, sampledCols]
#> [1] 12 0 0 5 0 0 0 7 10 0