Loads a NIfTI-format neuroimaging file and transforms it into a structured data frame,
organizing voxel-level information for downstream analysis. This function is the first step
in the neuroimaging processing pipeline in neuroSCC
, converting raw PET data into
a format suitable for functional data analysis. SCCs are later computed using functions
from the ImageSCC
package, such as ImageSCC::scc.image()
.
Arguments
- name
character
. The full path to the NIfTI file to process.- demo
Optional
data.frame
containing demographic information. If provided, it should include columns (case-insensitive):PPT
,Group
,Sex
, andAge
. If automatic matching via thePPT
column fails, the row specified bydemoRow
is used. Default isNULL
.- demoRow
integer
. Row to use from the demographic table if automatic matching fails. Default is1
.
Value
A data frame where each row represents a voxel (3D pixel).
If demographics are provided: the columns include
PPT
,Group
,Sex
,Age
,z
,x
,y
, andpet
.If demographics are not provided: the columns include
z
,x
,y
, andpet
.
The pet
column contains the PET intensity value at each voxel location.
Details
The function performs the following steps
Loads the NIfTI file using
oro.nifti::readNIfTI()
.Converts the 3D image into a tidy data frame.
Adds
z
,x
, andy
voxel coordinates.If demographic data is provided, attempts to match based on
PPT
(case-insensitive). If no match is found,demoRow
is used.
The resulting data frame serves as input for databaseCreator
, matrixCreator
,
and other core functions in the neuroSCC
pipeline.
See also
databaseCreator
for batch image processing. readNIfTI
for reading NIfTI-format files.
Examples
# Load a sample Control NIfTI file
niftiFile <- system.file("extdata", "syntheticControl1.nii.gz", package = "neuroSCC")
# Example Without demographic data
petData <- neuroCleaner(niftiFile)
petData[sample(nrow(petData), 10), ] # Show 10 random voxels
#> z x y pet
#> 727430 74 31 73 0
#> 782978 79 86 31 0
#> 682067 69 70 54 6
#> 860620 87 70 65 0
#> 667570 68 28 54 10
#> 118523 12 87 40 0
#> 391197 40 40 105 0
#> 29528 3 89 98 0
#> 297705 31 2 26 0
#> 142307 15 32 62 5